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To develop a numerical solution of mentioned equations the method of 
factorized projection of integral operator kernel is applied. All matrix 
elements of the method are calculated analytically, being expressed in terms 
of two types of standard integrals: the overlap integrals and one-electron 
Coulomb integrals. To calculate the integrals we used the O(4)-symmetry of 
hydrogen-like atomic orbitals as well as operational technique of differenti- 
ation with respect to scalar and vector parameters. 
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1. Introduction 

In this work we consider the numerical approach to solution of the integral 
Har t ree-Fock  equations for molecules. This approach can be used for ab initio 
calculations of terms of many-atomic molecules by the method of MO LCAO.  
The characteristic property of the approach resides in the fact that the parameters 
of the AO-exponents  are calculated during the solution of Har t ree-Fock  
problem. 

This work presents the development and revision of work [1], wherein the 
approach of factorized projection was presented to solve the integral Har t ree -  
Fock equations for molecules numerically by the method of MO LCAO in 
momentum space. 
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We have chosen the momentum space instead of the coordinate one for two 
reasons. First, it is possible to rewrite the system of Hartree-Fock equations in 
the form of a single scalar equation similar to Hartree equation, including, 
however, exchange part of two-electron interaction. Second, there is an attractive 
possibility of taking into account the O(4)-symmetry of hydrogen-like AO to 
transform the integral Hartree-Fock equation to an integral equation describing 
solely the discrete spectrum of one-electron states. In essence, this transformation 
implies the conversion to Sturm's eigenvalue problem with the potential, permit- 
ting the finite motion only, as in the case of the harmonic oscillator. 

This work pursues the practical objective: to develop a suitable algorithm for 
solution of Hartree-Fock problem for atoms and molecules by the method of 
MO LCAO; the algorithm, combining analytical rigor with the possibility of 
analyzing the matrix elements by consideration of separate contributions with 
clear physical sense. 

2. Integral Hartree -Fock  Equation for a Closed Electronic Shell of a 
Molecule  and the Method of M O  L C A O  

Let us write the Hartree-Fock equations for a closed electronic shell of a molecule 
in the form of a single scalar equation in the momentum space [2]. In the atomic 
units of length, charge, energy and mass this equation has the form 

 (p2 § p i) i(v f K (p, v')J,i(v') d3v '= O. (2.1) 

The kernel of the integral operator is 

K (p, p') = G(p, p') - 2F(p, p') + f(p, p') (2.2) 

where 

G(p, p') = Z Za exp [-i(p -p')Ra](p _p,)-2, (2.3a) a 

n J2 I 
F(p, p') = ~ O~ (P'-'rl)Oi(P -11) d3"q(P _p,)-2, (2.3b) 

j = l  

he~2 I 
/ ( t , , t , ' )  = 2 n-~(p'-n)g'J(t,-n)d%, (2.3c) 

]=1 

Za and Ra are the charge and the coordinates of ath nucleus in the molecule 
respectively. 

It is easy to check, that the kernel K(p, p') has the Hermitian character: 

K(p, p') = K*(p', p) 

where the sign * means the complex conjugation. The parameter poi is connected 
with the energy e~ of the ith electron by the relation 

p2 i  = -2ei. (2.4) 
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When the spectrum is discrete, the parameter  pol is a real number, when the 
spectrum is continuous, P0i becomes an imaginary number. 

The integral Eq. (2.1) is an integral equation of the third kind. 

The Eq. (2.1) can be reduced to an integral equation of the second kind by 
means of transformation of momentum p from Cartesian coordinates to Fock 
coordinates [3]. The latter determine the surface of 4-dimensional unit sphere 
in terms of the angles a, 0, q~. 

Fock transformation for the momentum p has the form 

2poipx _ sin a sin 0 cos q~, 
- po2 +p2 

2poip~ = sin a sin 0 sin ~, 
rl - -p~i  + p 

(2.5) 
2poipz 

-- p2 i + p 2  -- s in  a cos  0, 

2 2 

Poi-P = c o s a ,  a, 0c[0 ,~- ] ,  q ~ [ 0 , 2 ~ ] .  
X - p2 i q_ p2 

The wave-function of ith electron can be transformed with the help of Eq. (2.5) 
as follows: 

~ 3 / 2  - -1  5 / 2  ~01(p)=z rr Po, (Pz~+P2)-2'tq(a, O, ~o). (2.6) 

The function ~ ( a ,  0, q~) satisfies the integral equation of the second kind 

P o ~ ( ~ i )  = (27r2) -a I K(f~,  1)I)~(1)I) df~l, (2.7) 

where 

K(Ut~, f~l) = G(IIi, D'~)± 2F(I)~, 12'i)+f(f~, Ill) i = 1, 2 . . . . .  ne/2, (2.8) 

and 

G(~).i, ~'i) = ~ Za  e-i(t '-P')R"[4 sin 2 ( toi /2)]  -1,  (2 .9a)  
a 

ne/2 I 
f ( n , ,  a l )  = I; ~* (p'-11)t~i(p-n) d3~l[ 4 sin2 (~oJ2)] -~, (2.9b) 

] = 1  

n J2 I t I~ 1 3 2 2 t2 f(12~,12i)= rt-2O*(p'- ' t l )Oj(p-vl)d "tl(p +Po~)(P +P~i). (2.9c) 
. =  

The symbol 12~ stands for the set of angles (a~, Oi, ~) ,  the surface element of 
4-sphere d f~  = sin 2 o~ • sin Oi da~ dO~ &o~, to~ means the angle between the points 
of 4-sphere, which have the coordinates f~ and f~l. 

To solve the integral equation (2.7) means to find the expansion of the kernel 
K(lIi ,  ~21) in bilinear series of functions, which depend on arguments 1)~ and f~l 
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separately. The calculation of these functions provides the solution of eigenvalue 
problem (2.7). 

In case of a single electron we have F = f = 0. Then, as was shown in [4], the 
expansion of [4 sin 2 (toi/2)] -1 in series of 4-dimensional spherical harmonics with 
subsequent diagonalization of the overlap matrix of the harmonics, centered in 
atoms of the molecule, yields exact solution of one-electron Schr6dinger equation 
in the form of MO LCAO.  The same form of the solution was obtained in [5]. 

Comparing the kernels G and F in Eq. (2.9) and taking into account the 
normalization property of the functions Oi(P) we can make a conclusion that the 
singular part, [4 sin 2 (toi/2)] -1, of the kernel K determines (in case of molecules 
with non-negative total charge) the character of discrete electronic terms, their 
denumerable set having a point of level, crowding similar to one of a hydrogen- 
like atom. 

The exchange part f (2.9c) of the kernel K does not have singularities at p = p', 
while the function F(p, p') is finite when p ~ oo and /or  p ' ~  ~ as a consequence 
of relation (2.6). 

However,  in case of negatively charged molecules the exchange part of interaction 
f can play a leading role in determination of the character of the set of electronic 
terms by stabilization of the interaction between nuclei and electrons of the 
molecule in the Har t ree -Fock  equation, the denumerable set of terms becoming 
finite or empty. The emptiness of the set means that the Har t ree-Fock  equation 
(2.7) is not applicable for the description of a given stable molecular system. In 
this case the consideration of correlation between the motion of electrons in the 
molecule is of principal importance. 

When solving the Eq. (2.7), one usually encounters two questions. The first is 
how to find initial models of MO ~i(P) for the purpose of calculation of kernels 
F and f. The second is how to construct the bilinear expansion of the kernel K 
(2.8) of the integral equation (2.7) for these initial models. These questions are 
interrelated. 

From the viewpoint of numerical solution of Eq. (2.7) the account of asymptotic 
properties of MO ~j at p ~ o o  does not seem to be important. However,  a 
consideration of these properties seems essential to us, since the similarity of 
the MO-asymptotic forms for Schr6dinger equation with the kernel (2.9a) and 
for Har t ree -Fock  equation with the kernel (2.8) shows the expediency to apply 
the hydrogen-like AO for bilinear expansion of the kernel K as well as for 
modelling the initial MO when calculating the kernels F and f. Schr6dinger's 
MO have the following valuable feature. Being substituted into the integrals 
(2.9b) and (2.9c) they do not result in the appearance of the functions with 
asymptotic forms other than AO of hydrogen-like type (HAO) in the expansions 
of the kernels F and f. This feature of H A O  is of principal importance both in 
the theory of Har t ree -Fock  equation (2.7), and in the development of numerical 
approaches to its solution. Therefore,  we suppose, that the basis of H A O  is the 
most natural for numerical solution of the Eq. (2.7). 
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To solve the integral equation (2.7) numerically let us apply the method of 
factorized projection of the kernel (2.8) developed in [1]. Formally speaking, 
the method consists in the solution of the system of equations 

Y. [A (urn, Un)Cn --(U,n, Kun)e .]  = 0 (2.10) 
n 

where u. are the basis functions, K is the kernel (2.8), A is a parameter of the 
equation, c. is an eigenvector of the equation, (Urn, U.) and (urn, K u . )  are the 
matrix elements. 

Since the kernel K algebraically depends on the eigenvectors c., the Eqs. (2.10) 
are algebraic. When the kernel K is fixed with respect to cn, these equations 
become linear. Therefore, at each iteration the problem is reduced to combined 
diagonalization of two Hermitian matrices of finite dimension, the main problem 
consisting in the calculation of the matrix elements of (urn, u,) and (u,,, Ku,,). 

3. Derivation of Expressions for the Matrix Elements 

So, we take 4-dimensional spherical harmonics ~n~m(fli)e ipRk, centered in the 
nuclei of the molecule, as the basis functions, which the solution ~i(lq~) is 
projected on. The integer numbers n, l and m define a spherical harmonic on 
the surface of 4-dimensional sphere, the index k being equal to the number of 
a nucleus with coordinates Rk. 

The matrix equation for eigenvectors c~ and eigenvalues po~ has the form 

PoiSci = n e e  (3.1) 

where the matrix elements are defined by the following integrals 

sn,rm, k, 1 I ntrnk = eiPRkk'~2"nlm(~).i)~zt*n'rm'(~').i) df~i, 
2 7r 2 

Rkk' = Rk  -- Rk', 
(3.2) 

H "'r~'k' l ffl nlmk ~ ~ eipRka~nlm(~-~i)K (~'~i, ~'~I) 

• e-lt,,Rk, . t ~,~,e,~,([li) dgll d~'~i. (3.3) 

The matrix elements of S-type represent the overlap integrals of the basis 
functions centered in the nuclei of the molecule. 

The matrix elements of H- type  include one-electron integrals of the interaction 
between electrons and nuclei of the molecule as well as interaction integrals of 
the electrons. 

Consider the calculation of all these integrals in succession. 
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3.1. Matrix Elements orS 
~ n ' l ' r a t k  ' 

The matrix elements ontmk of (3.2) were calculated in [6], where they were 
n~l,rn ~ designated as Sm,~ (Rkk'). The matrix elements of S can be calculated with the 

help of Wigner-Biedenharn theorem [7] about the expansion of a product of 
O(4)-harmonics in finite series of O(4)-harmonics with subsequent application 
of Fourier-transformation of H A O  from momentum space to coordinate space. 

The final result for the matrix element of S is as follows: 

s n ' l ' m ' k '  p ! r nlmk = ~. "rrl/2po3/2UNpoi, NLM(Rkk,)T(nlm, n 1 m ; NLM),  (3.4) 
N L M  

where UNpO,;NLM(R) is H A O  in the coordinate space, and 

f 4p2i . T(nlm, n 'l' m '; NLM)  = (2rr2) -1 p2 i + p2 ~n't'm'(FZi) 

x ~.im (n,)xtr*LM(ai) dlIi. (3.5) 

The coefficients T are calculated in terms of the integrals of the product of three 
O(4)-harmonics in a following way: 

T(nlm, n'l'm'; NLM)  = 2C(nlm, n'l' m'; NLM)  

+ Y~ C*(n'l'm', uLM; nlm) 
v = I N - 2 [ + l ( 2 ) N + l  

x C*(NLM, 200; vLM), (3.6) 

where 

1 2 f  C(nlrn, nTm' ;  NLM)  = ~ 2  ~,t,,(l)~)~n'rm'(f~i) 

x ~*LM(Y/~) dl),. (3.7) 

In a special article we shall consider the practical calculation of the coefficients 
C(nlm, n T m ' , N L M ) .  Here  we note that the coefficients (3.7) become zero 
unless the numbers N, L, M satisfy the following conditions 

N =  I n - n ' l + l ,  I n - n ' l + 3  . . . . .  n + n ' - 3 ,  n + n ' - l ,  

N > L  = II-/ 'l, 1 / - / ' [ + 2 , . . . ,  l+1 ' -2 ,  l+I', (3.7a) 

m = m + m ' .  

Hydrogen-like atomic orbitals have the following form in the coordinate space 

RNpoi ,  N L M ( I "  ) m RNL(pOir) Y L M ( r ) ,  ( 3 . 8 )  

where 

CNL(2poir) LN--L--1 (2po~r) e (3.9) RNL(Poir)= L 2L+l --Poir 
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Ylm (~) is the spherical function in R 3, L :  (z) is the associated Laguerre polynomial 
[8], 

CNL = 2p 3o~2 [N(N + L)!/(N - L - 1)!-1/2, (3.1 O) 

is a unit vector in the direction of r. 

3.2. Matrix elements of H 

To calculate the matrix elements of H- type  (3.3) it is necessary to have the 
approximations for molecular orbitals with which the kernels F and f can be 
calculated. 

In the method of factorized projection of the kernel (2.8) the wave functions 01 
are constructed in the form of LCAO or their iterations by the kernel (2.8) of 
the integral equation (2.7). That is why our calculations of the matrix elements 
of H may have various degrees of complication depending on the chosen way 
of construction of tpl. Let  us choose the method of construction of $/(p) in the 
form of LC AO with AO having HAO-type  given in the momentum space as 
follows: 

~i(t') Z i -i.~ , = c NL~,, e ~ (3.11) 
NLMa 

where H A O  * tPi, NLM(p) has the form 
, ,.~3/2 --1 5 /2  / 2 2 --2 * 

~i,NLM(P) =/~ ~ Poi ~,Po~+P ) ff~'i, NLM(p,O,~),  (3.12) 

where 
L 2 2 

( 2poiP '~ c,L+I {Poi--P "~ YLM(O, ~), (3.13) q~NL~(P, 0, ~) = UnL/--7---7--~/ ~ n - L - n ~ r  
" \ P o i  + P  / \Poi-eP / 

C:(Z) is the Gegenbauer  polynomial [8], bNL=(--1) N§247 2~rl/2[N(N- 
L -1 ) I / (N+L) ! ]  ~/2, YLM(O, ~) is the modified spherical harmonic which is 
related to the usual spherical harmonic: 

YLM(O, ~) : (--i)L yLM(O, ~). ( 3 . 1 4 )  

With the help of the coordinates (2.5) the function ~tNL M (p, O, ~) can be rewritten 
as a 4-dimensional spherical harmonic, which depends on the angles a, 0 and q~: 

~XtNLM(O~, O, ~) = bNL sin L o~C~+-IL-1 (COS a) YLM(O, ~). (3.15) 

Now let us calculate the kernels F(fl/ ,  I~i) and f(f~, f~l) given by the formulae 
(2.9b, c). 

he~2 
F = E Fj[4 sin 2 (oJi/2)] -1 (3.16) 

i = 1  

where 

Fj = I O ~ ( P ' - ~ ) O j ( P - ~ )  d3n. (3.17) 
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n / 2  
e 2 2 p2 2 

f= Z fJ(p +po,)(p +poi) (3.18) 
j = l  

where 

fi = Y rl-2 qt* (P'-r l )6i(P -'q) d3"q" (3.19) 

Let us substitute the function ~0,(p) which is given by the expression (3.11) into 
the integrals Fj- and ~. 

F1 -~ Z E C~,NLMaCj, N 'L 'M'a '  
NLMa N'L 'M'  a' 

• eit"R~176 I i ~  a,-- , * e a qtj, N ,L ,M, (p  __Ii)~bj, NLM(P --'11) d3'll (3 .20)  

f,= E E c* ],NLMa C j, N 'L 'M'  a' 
NLMa N'L 'M'  a" 

X e i#Rw-iOR~ I i~qR , - 2 ~  e "~ r/ ~Uj.N'L'M'(p'--~I)r --~q) d3~. (3.21) 

The calculation of the integrals over d3-q in Eqs. (3.20) and (3.21) presents a 
serious problem. 

The substitution of Eqs. (3.20) and (3.21) into Eqs. (3.16) and (3.18) respectively, 
followed by the substitution of the kernels F and f into the matrix element of 
H (3.3) yields the following general expression: 

ff nlmk = ~, Z a  e iORk~ Xltnlm ( ~-'~i ) 
a d d  

- 2  Y. Z Z * eipR~~ C j,NLMaC j ,N'L'M'a'  
j = 1 NLMa N'L 'M'a '  

f e i'tlRaa' f * X ~Jj, N'L'M' (P -- 'rl)~OI, NLM(P -- '!1) d3rl 

x e-~n"R~'~'~*,rm,(fl~)[4 sin 2 (to//2)] -1 dI)i dl~; 
n e/2 

"-1- ~, ~ ~ C~,NLMaCj, N 'L 'M'a  ' 
j = l  NLMa N'L 'M'a '  

I f i pR i r  2 2  X e aXl2"nlm(~'~i)(P +po i )  

f i'qRaa, --2, .  X e ~1 ~ j ,N 'L 'M ' (P ' - - ' q )&~ ,NLM(P- - lq )da~q  

X --ip'R k, , . r .*  z ~ t x /  t2 2 r] e a a',,,t,,,,tst~)~,p +Po~) d ~ i d f l ~  . (3 .22)  J 
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Investigation of Eq. (3.22) shows that the calculations of all the integrals require 
an addition theorem for H A O  in the momentum space. Such a theorem cannot 
be obtained in terms of a finite sum, therefore we need such a formulation of 
the theorem that the series factorizing the function t~nt,~(p-~1) with respect to 
the arguments p and ~!, should have minimal number of indices of the infinite 
summation. 

We derived such a theorem in [9]. In this work we present the expression omitting 
the derivation: 

tppol,,am( p -  k) = 4(7rpo2) 1/2 Y, (-1)L(Po22 +pa)-~po2,NLM(p ) 
N L M  

X ~ L 'M'  N 'L '  GLM;tmBnI,NL~Opo,N,L'M, (k ) (3.23) 
N ' L ' M '  

where P0 = pot +p02. The sum is finite with respect to the indices N'L 'M' ,  L, M, 
being infinite with respect to N. 

L 'M'  In the Eq. (3.23) the coefficient GLee;tin is well-known Gaunt integral, 
w 2~-  

G L'~'LM;tm--f f Yt,,,(O,q~)YL~(O,~p)Y*,~,(O,q~)sinOdOdq~, (3.24) 
a 0  a 0  

�9 N 'L '  the coefficient B,I;NL is determined by the expression 

B N'L '  ,a;NL Cn~CNLCN~'v[F(N' + L' + I)] -1 

n--l--1 N--L--1 

• ~, Z (-1)~ -1 
= 0  13 = 0  

x (po~/po) ~ (Po2/Po) t~ F(L' + 1 + L + 2 + c~ +/3) 

( , , + t  N + L  
X (3.25) 

\ n  - l -  1 - ~J \ N - L -  1 - / 3 ) '  

the coefficients CN,L, being given by Eq. (3.10), wherein po~ should be substituted 
by the parameter  Po. 

As we see from the expansion (3.23), H A O  qZ,o~.NLu(p ) and 6po.N'L'~' (k) belong 
to spaces with different scales characterized by the parameters p02 and p0 
respectively. The parameter  Po2 is arbitrary in the region of positive real numbers 
and it is to be chosen as applied to a concrete problem. 

Let  us consider the expression (3.22) which is the sum of three contributions: 
one-electron contribution as well as Coulomb and exchange two-electron 
contributions. 

By means of addition theorem (3 �9 for H A O  0i,m-M(P - ~1) and ~Oi, N,VM, (p' -- ~1) 
we can reduce two-electron integrals to overlap integrals of H A O  and one- 
electron integrals occurring in the first contribution to Eq. (3.22). In this connec- 
tion a curious fact should be mentioned that two-electron exchange integrals 
are calculated more easily than Coulomb integrals, since the former include two 
infinite summations, while the latter include one more infinite summation arising 
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when calculating the Coulomb integrals of one-electron type. Note that two- 
electron Coulomb integrals can also be reduced to double infinite summation. 
In this case, however, one-electron Coulomb integrals arise which are more 
complicated than the standard integrals we want to reduce the problem of 
calculating the matrix element (3.22) to. 

Although our misgivings of that kind may not be well-founded, we prefer the 
way of calculation described in what follows. 

So we first calculate the integrals over d3rl in Eq. (3.22), i.e. the quantities 
constituting Fj and/~. 

Let us introduce the notation: 

I i"qR I * Fi(NLM, N 'L 'M' ,  R)  = e Oi.N'L'M' (P -- rl)Oj.NLM(p --'tl) d3"tl, (3.26) 

= f e n I[Ij, N'L'M'(P --'I~)~-/],NLM(P --'1~) d3"tl. (3.27) f i (NLM, N 'L 'M' ,  R)  inR -2 , . 

Substituting the expansion (3.23), where we put pol =Pot, poe =Poi into Eqs. 
(3.26) and (3.27), then we have 

Fj(NLM, N 'L 'M' ,  R) = 16~rpo, E (_I)L~+L~(poZ ' +p2)-l(p~, + p,2)-~ 
NILIM~ 

p 
X ~IIpoi, NxLiMl(P)~poi,  NILIMi (p  ) 

NzL2M 2 N�89189 
~L~M~ N~L~ 

X ,JL{M~.;L,M,BN,L,;Nj.L{ 

I , i~lR 
x O,o.N2L2M20q)0po.N~LSM~('q) e d 3 n ;  (3.28) 

f j(NLM, N 'L 'M' ,  R) = 167rpo~ Y~ E (__I)L,+L~(p2 i +p2)- l (p~ +p,2)-~ 
N1LIM1 NJLj.MI 

)< * p q'.0,.mL~M~(t')q'p0,.U~L~Md tP ) 

N2L2M2 N�89189189 

f inR -2  , ,  . d 3 e rl 0po N~L~ 0q)0,o N~L~M~ ('q) "q, (3.29) X 

where po=poi+poj. The integrals over d3~ in Eqs. (3.28) and (3.29) can be 
calculated in a closed form. This will be done later. 

Let us substitute the expressions (3.28) and (3.29) into the matrix element 
(3.22). After some algebra we obtain the following integrals over the variables 
Oi and l~:  
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(1) The integrals of one-electron part 

Ql = f f elt'Rk~g]n,m(~i)[4 sin2 (ooi/2)] -1 

x e-"'R~'~ df~, dill. (3.30) 

(2) The integrals of two-electron Coulomb part 

I f  ipR k 2 2 - 1  O2= e aWoo,,,t,~(f~i)(poi+p ) '~po,,N1L1MI(f~i) 

--ip' R~:, , .T.r ( r r x [4 sin 2 (wi/2)] -1 e ~ U.po,..,r,~,~i j 
2 t2 --1 r 

x ( P o i + P )  q~po.NiLiMi(f~i) df~idl2'i. (3.31) 

(3) The integrals of two-electron exchange part 

ON ~- ff eiPRka ~tfPOi,nlrrt(ai)~oi.N1L1Ml (fli) df~, 

f _ ip ,Rk  ' , :~ ! ; x e ~ 9poi ,n ' l 'm'(~ '~i)~XtPoi ,  S ~ L ~ M ~ ( ~ ' ~ i )  d i l l .  (3.32) 

It follows from the comparison with the integral (3.2) that the integral Q3 can 
be expressed in terms of the integrals of S-type, namely 

I,.'~ 2x2r ,  N x L 1 M l a t .  n ' l 'm'k" 03-~ (Z.qr ) L3nlmk '3NiLiMia'. (3.33) 

The integral Qz can be easily reduced to a linear combination of integrals of 
Q~-type. To perform this one can use Wigner-Biedenharn theorem about the 
expansion of a product of spherical harmonics in finite series in R4. 

Thus, it is necessary to calculate the integral of Q~-type. There are at least two 
possible approaches here. The first one is to expand the kernel [4 sin 2 (o~/2)] -1 
in bilinear series of O(4)-harmonics. Then the integral has the form of infinite 
series of the functions S which are given by the Eq. (3.2). Such a series has 
absolute convergence, but for practical purposes the rate of this convergence is 
not sufficient since the integral Q~ includes a sum over multipoles, i.e. over 
power functions of R - l ,  the power function of distances R k-J and -~ R k'~' being 
expanded in series of the functions of exponential decrease. 

The second approach just provides the overcoming of this disadvantage, the 
expansion of the integral O~ being carried out in multipoles as well as exponen- 
tially decreasing functions of interatomic distances simultaneously. 

So, let us consider the integral Oa given by the expression (3.30), and let us 
make the transformation from Ra-space to R3-space by means of the Eq. (2.6) 
and following relations: 

IP _p,[-2 = (2p0,)2[(p2 +p2)(p~i +p,2)4 sin 2 (wj2)]_~, 

df~ = [2po~/(p~i + p2)]3 d3p. (3.34) 
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Then 

~.lm(fl/)[4 " 2 - 1  , ,, sin (toi/2)] ~.'rm'(I~i) dD~idl~ 
4 -3 z 5 , , , -2  d3p, 

r , I t , - t , I  d 3 t ,  �9 = (2poi) 2 ~r r~oi 4~, nl,,( ) ,n l,~ ( ) (3.35) 

Substituting the expression (3.35) into the integral (3.30) we can obtain the 
integral 

Ol = 2poilzr2 ff ff eZ~'katpi, nlm(p)]p--p'1-2 

--iP'Rk,a,--~ { t~ .13 • e t~i,,,r,~, ~p ) u p d3p '. (3.36) 

With the help of the change of variables p - p '  = lq and the addition theorem for 
H A O  (3.23) we can represent the integral Oa as the following sum: 

Qt  = 4(TrPoi)l/22Po:Tr2(-1) ~' Y'. ( -1 )  ~ eiP(Rk~--Rk,~,) 
~,Alz .I 

X (P~i 2 - - 1  / ' 7  x ' I x '  D u ' A '  +P ) O~,,a~(P)~po,,,,x~,(P) d3p x E ,-,x~;r-m'~'r;~x 

f --i'qR k, , --2 • e ~ r/ 4t2po,,~,x'.' ('q) d3~l. (3,37) 

Note that 

I ixlR -2 QNLM(po, R) -- e ~7 ~Ppo,~L~('q) d3~l. (3.38) 

The integral Q in Eq. (3.38) is a standard Coulomb integral which is worthy of 
consideration in detail. 

When R = 0 we have 

f -2-- : ~ d 3 QNLM(PO, O) = "r I Iff po,NLM('q) "l] 

= ~'2N-lpo~bpo,Ntu(O). (3.39) 

When R ~ 0 we have 

Q N L M ( p o ,  R )  = ~ 3 / 2  -1-5/Zb ( 2 L + 2 ) N - L - l ( 2  0 L 2 N--L--I 
z 7r t-'o NL ( N - L - l ) !  P ) ( p )  

x ~LM( iVR)F( - -N  + L  + 1, 1 3 - N + ~ ;  L+~ ;  AR/p  2) 

f rl-2 ei'qR(P~+ "r/2)-N-1 d3~ (3.40) • 

where the properties of Fourier integral are allowed for, while the polynomial 
part of the integrand is taken outside the integral and written in the form of 
polynomial differential operator  acting on the parameter  R. The function 
F(a ,  fl, y, z)  is the hypergeometric Gauss function reduced to Gegenbauer  
polynomial [8] (see also Eq. (3.13)). ~LM is the modified solid harmonic. 
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The calculation of the integral (3.40) can be reduced to Bessel transformation 
of a rational function. As a result we have 

fiT/--2 --i~R (p2 _[_ 1/2)--N--1 d3 (_I)N !)-127r2 R-1DjgPo2 l~l/2(poR (N [1 )] e 

(3.41) 

where Dp~ = ON/(Op~) N, l~l/2(poR) is the reduced Bessel function of half-integer 
index which is determined by the recurrent relation 

2 ^ z kN-1/2(z)  =/~N+3/2(z) - (2N + 1)/~N+l/2(Z) (3.42) 

with 1~-1/2(z) = e-Zz -1 /~1/2(z) = e -~ 

To calculate the integral (3.41) we represented the integrand fraction as the 
elementary fractions: 

[r/2(p2 + r/=)]-i = po2 it/-2 _ (p2+ ~72)-1]. (3.43) 

Therefore, the integral (3.40) can be written as follows 

QNLM(Po, R )  = 23/27r-1p~/ZbNc (2L + 2-~-)N~. 1 (2p0)L(p2) N-L-1 
( N - - L  - I ) :  

X (--1)N(N!)-12rr2@lLM(iVR) 

• F ( - N  + L + 1, - N  + }; L + 3; 2xt~/p~) 

x JR-1 ~ N  - -2  - -1  N - - 2  ^ ~pgPo - R  Dpgpo kl /2(poR)],  (3.44) 

One can easily obtain the result of the action of the operators ~,.M(iV~) and 
F(.  �9 �9 ; AR/p~) on the function in the square brackets of Eq. (3.44), taking into 
account the following properties of the function: 

1 
dXR~- = -4rr6 (R) 

and 

~LM (iVR)R-1 = R - L - 1  Yt.M (/~)/~L+1/2(0) 

where 

k~+1/2(0) = (2L)!(L!)-12-L 

and 

ARI~-a/z(poR ) = paol~-l/2(poR ) - 4 r (R) .  (3.45) 

It follows from Eq. (3.45) that when R ~ 0 

F ( - N + L +  1, - N + ~ ;  L+3 ;  AR/P2o)l~_t/2(poR) 

= F ( - N  + L + I, - N  + �89 L + ~; 2 - 2  ^ Po/po)k-1/2(poR )l~o=po (3.46) 
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where we have introduced the paramete r  if0 to avoid a confusion with the 
differentiation pa ramete r  P0. Further,  f rom Eq. (3.45) we also have 

~LM(iVR)fr ) = p o l R  -L-1 YLM(I~)flCL+a/2(poR ). (3.47) 

So we obtain the following expression for the integral (3.40) 

N 5/2 ( 2 L + 2 ) N - L - I ~  ~L~ 2N L 1 5/~ 
ONLM(Po, R)=( - -1 )  2 W ~ . ; ~ - ~ ~ ~ Z t ' o )  tt'O) - - PO 

- L - 1  ^ * N - 2  x R YrM(R)[kL+I/2(O)Dp~po 
N - -2  3 2 - 2  ^ - Dp~po F ( - N  + L + 1, - N  + �89 L + ~; po/Po)kL+l/2(poR)] 

(3.48) 

where Po = po is meant .  

It is not difficult to carry out the remaining differentiation with respect to p02, if 
one takes into account the fact that Gauss function F is a polynomial  of the 
degree of N -  L -  1. 

Finally the substitution of the following expressions for the derivatives: 

N -a = (_I)NNV (po2)N+l Dp~po �9 (3.49a) 

and 

N - 2  1 3 2 - 2  ^ Dpgpo F ( - N  + L + 1, - N  + ~; L + 3; po/Po)kL+l/2(poR)] po=,o 

N ~ - l  ( t~ - 2 t ( - N  + L + I' t ) ( - N  + �89 t)F(L + t + 3 ) F ( 2 N - t )  
= , Po ( L + ~ , t ) F ( N + � 8 9  

t s 2s ~ 

I + Y. ( - 1 ) '  2-~po2~+2L+lR2L+lfq_L-1/g(poR) 
s = L + I  \ S ] J 

(3.49b) 

into the Eq. (3.48) yields a standard working formula for Coulomb integral 

QNLM(Po, R). 

It  follows f rom Eq. (3.48) that the Coulomb integral includes both the multipole 
contribution which is regular at large distances R, and the contribution with 
exponential  decrease. 

Therefore  the mathematical  structure of the expression (3.48) leads to the 
physically important  result concerning the predominance of multipole contribu- 
tions to Coulomb integrals at large inter-atomic distances R. 

Returning to the integral Q1 (3.37) we can see that the integral over  d3p which 
remained uncalculated coincides up to a coefficient with the function (3.2) 
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wherein Rkk' should be replaced by Rka --Rk'a', namely 

I ip(R k --Rk,a,) 2 2 --1 
e " ( p o i + p )  ~po,,,,t,~(p)~po,,~,x~,(p)dap 

/ a \ /x  ~'~5/2 5 /2  {"1~ ~--3 ~ ~,A.--/z 
= ~,--1) Z; ~P0i tz-/-'01) Onlm (Rka --Rk'a') .  (3 .50)  

Finally we have 

m' 5 /2  5 /2  1 /2  7 - 1  - 2  
Q I = ( - 1 )  2 ~rpol 4(~rpoi) 2 pol ~r 

X ~ ~,+a v~.--~ ( - i )  S.t~ (Po~,Rka-Rk'.') 
vA~ 

2 X ~ Ox~.l-m,Bn,l, .~,xOu,x,~,(po~,Rk',~') (3.51) 

where the substitutions po~ = po~, p02 = po~ and p0 = 2po~ should be done to calculate 
the coefficients B. 

Putting a = a'  we obtain the expression for one-electron Coulomb contribution 
to the matrix element H (3.22). 

At  last let us consider the integral of Q2-type (3.31). It differs from Q1 (3.30) 
by the presence of the product of two harmonics of 0(4)  instead of W,t,,(f~i). 
Let  us use Wigner-Biedenharn theorem and represent the product  of 4- 
dimensional spherical harmonics in the form of their finite sum: 

q~,t,~(f~)~a~(f~) = ~ C(nlm,  vAtz; NLM)~NLM(I~)  (3.52) 
NLM 

where coefficients C(nlm,  v A l z ; N L M )  are given by the integral (3.7). Further 
let us take into consideration that 

(po2+p2) - t  = (2po)-22(1 +cos a) = (2po)-2[2qqoo(f~) + ~2oo(12)]. (3.53) 

Making use of Eqs. (3.52) and (3.53) we can transform the integral (3.51) to 
the following sum of integrals of Ol-type: 

Q2 = (--1)M;+M2(2poi) -4 

2 

x ~., d,~ Y. C(vO0,  N 1 L 1 - M 1 ;  r i L l - M 1 )  
/)=I Vl 

C ( nlm, vlL1 - M 2 ;  N2L2M2) 

Y~ C(v'OO, N'IL'~-M'I ; v'~L'I-M'~) 
vi=l  

• y. 
N2L2M2 

2 
X Z  d~, 

o '=1  

x Y~ C(n ' l 'm ' ,  ' ' M '  ' ' ' v l L 1 -  2 ; N 2 L 2 M 2 )  
N�89189 

X Q I ( N 2 L 2 M 2 ,  ' ' ' �9 N 2L 2 M  2 , poi, Rka,  Rk '  a'), (3.54) 

w h e r e  d l  = 2, d2 = 1. 
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To complete the calculation of the matrix element of H (3.22) we should evaluate 
the integrals over d3~ in Eqs. (3.28) and (3.29). This procedure is quite simple. 
Indeed, one can reduce the integral in Eq. (3.28) to the functions of Eq. (3.2)-type 
if one transforms the momentum "q to the spherical coordinates of R4-space. 

OpoY2L~2 (lq)Opo,N~L~ ('q) e i~R d3 q 

2 
=(zr-123/2pSo/a)2(2p~)-52zr2 ~ d~ 

v=l  

• C(vO0, N ' L ' M  . . . . .  ~r, ~cNJ-2vt~ro~ 2 2 2,1) L21v, 2tOv'L~,M �89 ~..j. (3.55) 
o I 

The integral in Eq. (3.29) can be reduced to an integral of Q-type by means of 
Wigner-Biedenharn theorem with allowance made for the relation 

3 
(2po)4(p2+p2) - 2 =  ~. d ' ~ o o 0 ( ~ )  (3 .56 )  

v=l  

where d" = {5, 4, 1}. 

As a result we obtain the desired expression for Coulomb integral in Eq. (3.29): 

f i'qR -2 ~ 3 

3 
= Or-123/2pSO/2 (2pO)--4(--1) Ma )[ dr~ 

v = l  

• ' ' ' v ~ Z A M ' ~ )  C(vO0, NEL2M2 ; 
Vl 

• ~ C ( N e L 2 - M 2 ,  v l L ~ M ~  ; N3L3M3)QN3L3M3 (Po, R ) .  (3.5,7) 
NsL3M3 

4. Summary 

We have calculated all the matrix elements for the given theory of the solution 
of integral Hartree-Fock equations by the method of MO LCAO for many- 
atomic molecules. We have showed that the matrix elements can be expressed 
in the form of expansions in standard functions such as overlap integrals S(R) 
and one-electron Coulomb integrals Q(R) which depend on inter-atomic 
distances. Since the present theory of solution of integral Hartree-Fock equations 
does not include any semi-empirical parameter, it can be used to carry out rather 
precise ab initio calculations of electronic molecular terms (naturally, in the 
frame of restricted precision of Hartree-Fock theory). In this work we did not 
consider the problem of correlations in calculations of the electronic terms. This 
is a subject of a special investigation. 
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